
Bedework Calendar Reference Manual
Bedework version 3.4

Last modified: September 14, 2007

http://www.bedework.org/

Bedework Reference Manual
The Bedework Manual contains an overview of the system, instructions for customizing and
installing a production version of Bedework and detailed descriptions of the various
components making up the system.

Table of Contents
Chapter 1 Overview

Calendar collections and folders... 5
Subscriptions.. 6
Views... 6

1.1 Public Events Calendaring..6
Public Event Administration: Users & Groups... 7

Groups:... 7
Group structure and access control:...8

Administrative users:.. 8
Authentication..9

1.2 Calendar Suites... 10
1.3 Personal & Group Calendaring.. 11

Chapter 2 Getting Started
2.1 The Quickstart...12

Packaged with the quickstart...12
System requirements...12
Instructions... 12
Logging... 13
Notes..14

2.2 Taking it further: initializing the database... 14

Chapter 3 Deploying Bedework
3.1 Prerequisites.. 16

Summary...16
Requirements ...16
Supported databases... 16
Unsupported databases.. 17
Install the quickstart and test your environment..17

3.2 Prepare a localized version of Bedework..17
Prepare your build and runtime properties.. 17

Sep 14, 2007 p.2

The properties file..18
Install...18
Global..19
Application...19

The options file...20
The name property... 20
The tzid property.. 20
The systemid property... 20
Other properties.. 21

Copy and update the skins (templates)..21
Stylesheets and Path discovery..21

3.3 Set up a production database... 22
Configure your applications context.xml...23
Configure Tomcat 5.5.x... 24

Allow no roles..24
Add Jdbc drivers... 25
Allow directory browsing..25
Uri encoding.. 25
JVM parameters...26

Configure hibernate...26
Setting your SQL dialect.. 26

Build the schema and initialize..27
3.4 Authentication.. 28
3.5 Build and deploy.. 29
3.6 Add a super user.. 29
3.7 Add administrative groups and users...29
3.8 Add Calendar Suites.. 30
3.9 Create initial public calendars, subscriptions, and views.. 31
3.10 Access rights and groups.. 31

Using ldap for groups and account validation..32
3.11 Upgrading..32

Chapter 4 Bedework and Portals
4.1 Introduction...34
4.2 Limitations of JSR168... 34

Binary – or ics – downloads... 35
Popups...35

4.3 Hope on the horizon.. 35

Chapter 5 Access Control

Sep 14, 2007 p.3

5.1 An overview..36
5.2 Definitions... 36

Principals...36
ACE..36
ACL..36

5.3 Scheduling and freebusy access... 36
Simplifying:.. 37

Chapter 6 Personal Calendars
6.1 Overview... 39

Default calendars... 39
Subscriptions and views... 39

6.2 Scheduling Meetings..39
Calendar users and addresses..40
In and Out .. 40
Scheduling resources...40

Chapter 7 Timezones
7.1 System timezones... 41

Building timezone information... 41

Chapter 8 Bedework and CalDAV
8.1 Summary..43
8.2 The Bedework implementation.. 43
8.3 CalDAV clients..44
8.4 Unsupported features.. 44

Recurrence features... 44
Recurrence id ranges.. 44

Sep 14, 2007 p.4

Chapter 1 Overview

Calendar collections and folders.
All calendar entities, events, tasks (todos) etc are stored within calendar structures consisting
of ‘calendar collections’ and ‘folders’. The distinction between folders and calendar
collections is a requirement of CalDAV, one of the calendaring systems supported by
bedework. A folder may not directly contain calendar objects such as events. It may contain
calendar collections or other folders. A calendar collection may only contain calendar objects
and may not contain folders.

The Bedework system is divided into two main spaces: the public events space, and the
personal and group calendaring space. Public events are stored below a public calendar root
folder and personal calendars are below the user calendar root folder.

There are a number of types of calendar collection:

1. Collection: the usual kind of collection of events, todos etc.

2. Trash: when events are ‘deleted’ they are moved here if possible. This gives users the
opportunity to undo the delete by moving it back.

3. Deleted: this is used when the user does not have delete access to an entity. For
example, a user might be subscribed to films and want to delete some of them from the
calendar view. An annotation is created and placed in this special calendar and acts as
a mask to suppress the entity. This may be changed in the future for some filter based
approach.

4. Busy: this type of calendar will be used to hold busy time information which will be
included in a free/busy display. For example, if the user always has lunch at 12midday

Sep 14, 2007 p.5

PUBLIC
EVENTS

calendars & events are
publicly viewable unless

hidden or access is changed

root is /public

PERSONAL & GROUP
EVENTS

calendars & events are
private unless shared

root is /user

to 1pm, then a recurring object could be placed here so that the calendar view is not
cluttered by such entries.

5. Inbox: this is where incoming meeting requests or published event information will
appear.

6. Outbox: scheduling requests targeted at users on other systems will be placed here for
subsequent processing.

Subscriptions
Subscriptions are made to calendars. At the moment bedework only supports subscriptions to
calendars within the same system. In time we hope to allow subscriptions to external calendar
systems. A subscription must have a unique name for the owner and may reference either a
folder or a calendar collection. A calendar must have a subscription before it can be made
visible in the personal user or public events client.

By default a user has a single subscription to their ‘home’ folder, for example, a user ‘janet’
would have a subscription to “/user/janet”. There are no default subscriptions in the public
space. They must all be explicitly created by administrators. Associated with each
subscription is some styling information which allows for coloring or other stylistic
preferences.

Views
Views are named collections of subscriptions. They are of most use in the public events
system though they are used in personal calendars. Public events administrators can create a
number of views. Typically they are used to group together subscriptions are to hold all
subscriptions (as in an “All” view).

1.1 Public Events Calendaring
The point of a public events system is, in general, to
disseminate event information to the widest and most
appropriate audience possible. It is important that the public
events are easily navigable and straightforward to find,
subscribe to, and create. To achieve this, the calendar tree
should be topical, consisting of high-level aggregate
categories such as “Arts”, “Lectures”, and “Athletics”.

Illustration 1 shows an example calendar structure for public
events. Noticeably absent from the tree are folders named by

Sep 14, 2007 p.6Illustration 1: public events

organization or department. As we have learned in web information architecture, users
should not need to know what group within an organization's hierarchy sponsors an item to
find it. However, an organization should still be able to pull a “departmental” view of the
calendar information and present only that to their intended audience: this is the purpose of
Calendar Suites. These are used to display a customized and filtered view of public events,
but are not intended for group calendaring – which takes place within the Personal & Group
calendaring space.

We believe the most flexible architecture for delivering public events is to create a large
central pool of events organized by topic and to draw from this pool both for individual user
and departmental access. Users who are interested in all lectures across your enterprise will
be able to subscribe to a single source for these events, while departments may display only
the lectures sponsored by them from the central pool.

As stated above Bedework's calendar trees are divided into folders and calendar collections.
Only calendar collections may be added to folders. Events may only be added to calendar
collections. In Illustration 1, it would not be possible to add an event to the root “Arts” folder;
rather, an administrator must decide to which art calendar an event belongs. To keep this
decision making process from becoming onerous, calendar collections within the top-level
categories should be course-grained, keeping the selection of appropriate calendars for events
as simple as possible.

Public Event Administration: Users & Groups

Groups:
In Bedework's current system, public events are administered centrally through the
administrative web client. Every administrator is a member of a group, and events are
owned not by administrative users directly, but by a special “event owner” associated with
the group. Each group also has a group owner that is a specific administrative user; this role
does not currently provide any functionality, but may in time (such as managing group
membership).

Sep 14, 2007 p.7

Illustration 2: Group Structure

Group1

admins

group owner, e.g. “douglm”

B event owner, e.g. “agrp_Group1”

The event owner is a user, not found in the organizations user space, that owns all the events
for a group. Having such an owner allows all group members to see and edit events within
the group. Also, the event owner is the “user” who's preferences define the behavior of a
calendar suite. The system ensures that these event owners are distinct from real users by
prefixing them with a string, by default “agrp_”.

Within the administrative client events are filtered by the current event owner so that
administrators can only see and edit events for their current group.

The super user(s) can switch to any group making all events available.

In addition, if the system is appropriately configured, locations, contacts and categories are
also filtered making them editable only by the group. They are however, always readable.
The other extreme of having no editable locations, contacts and categories has been requested
and something near that can be achieved by creating them in a special group. The intent is to
create locations so that they conform to a particular code of practice. Not allowing
administrators to create locations at all may become a problem when events take place off
campus.

Group structure and access control:
Access control is inherited from the top down the group tree. Therefore, it is best to create a
single, top-level group for access to /public and then add all other administrative groups to it.
By default, Bedework comes with a top-level group named “campusAdminGroups”. All
other groups should be made members of this group to inherit write-content access on
/public. Unlike calendars, groups are organizational, e.g. “Arts”, “SOE” (school of
engineering), or “Athletics”.

While it is possible to close branches of the /public sub-tree from access to all administrators
by creating a different group hierarchy, we discourage doing this. If public calendars are kept
topical, an administrator from any group can add events to any calendar in the tree.
However, an administrator can only see events created by his or her group.

It is important to remember that “departmental” calendaring (group calendaring) should be
kept away from the /public tree – which is only intended for public events. Events that must
not be seen by any but a subset of your community are not public (such events are to be
distinguished from those intended for a subset of your community that are ok for others to
see). These should be kept in the personal space, or if your need dictates it, in a top-level
/dept branch of the tree which you will need to create. We believe in actual practice, most
group calendaring will best be managed within the personal and group space.

Sep 14, 2007 p.8

Administrative users:
To add an administrative user to the system, simply add the user to a group. When a user is
removed from all groups, the user will be removed from the system. Because the public event
space is distinct from the personal calendaring space, administrative users are managed in
Bedework's database by default (though they need not be).

Once in the system, an administrative user may be given roles from the “Manage public event
administrators”menu item under “User management”. The current meaningful roles are
'super-user' and 'publicEvent' administrator. The publicEvent role allows write-content
access to the /public tree (assuming the user is in a child group of the top-level
campusAdminGroups and the ACLs are not changed); the super-user role allows full access
to the Bedework admin client.

Authentication
Authentication is not managed by the Bedework system internally, but by the servlet (or J2ee)
container (see section 2.4, Authentication). Administrative roles and authentication are
separate; a user who can authenticate, but who is not an administrative user, will see a “No
Access” message upon logging into the admin client. A user who has been added as an
administrator but who cannot authenticate cannot log in at all. Both conditions –
authentication and authorization – must be met for administrators to work in the admin
client.

Sep 14, 2007 p.9

1.2 Calendar Suites

The intent of calendar suites is to provide a customized view and appearance for significant
groups within an organization, such as a school or large department. A calendar suite is
associated with an administrative group which has an event owner (an internal bedework
account) whose preferences are used to set up the skin, default view, view period, views and
subscriptions.

Sep 14, 2007 p.10

1.3 Personal & Group Calendaring
Personal and group calendaring is the second calendaring space provided by Bedework. It is
the realm of desktop calendar clients, personal schedules, shared calendars, meetings,
invitations, to dos, and so on. Much of the calendaring standards focus on this aspect of
calendaring, and there are many commercial examples in this space (e.g. Microsoft Exchange
with Outlook).

Many of the mechanisms used by the personal calendars, such as preferences, views and
subscriptions, are also used by the public user clients to configure their appearance. The
major differences between public and personal events lie on the way events are shared and
access is managed. A further major difference not fully handled in this release is the need for
multi-language support in public events, a need nowhere near as pressing in personal and
group calendaring.

Personal calendars also have the problem of interacting with external clients and handling
events generated elsewhere, for example through meeting requests.

The personal calendar space is rooted of the main user calendar, named by default “/user”.
(these names can be configured at build and deployment time to be more appropriate for
non-English speaking institutions.)

Below this is a folder for each user of the system for which there has been some activity.
Unless an organization chooses to build some form of feed, users who have never had
meeting requests and have never logged on will have no presence in bedework. Their user
calendars will be created automatically the first time an event is sent to the account or they
log on. Personal calendaring is dealt with more fully in Personal Calendars – Page 39

Sep 14, 2007 p.11

Chapter 2 Getting Started

2.1 The Quickstart
To try out Bedework, begin by downloading and running the quickstart package. You can
get the most recent release from the Bedework website: http://www.bedework.org .

The quickstart release distribution is provided for those who want to get familiar with the
calendar quickly and easily, without having to compile and deploy code, and without having
to set up a database. It is preloaded with data so you can see how the system looks in
production.

Packaged with the quickstart
1. Bedework (version 3.3)
2. Tomcat 5.5 (apache-tomcat-5.5.17)
3. Hypersonic SQL 1.7 (hsqldb-1.7.3.3)
4. Apache Ant 1.6 (apache-ant-1.6.5)

System requirements
1. JDK 1.5
2. JAVA_HOME environment variable must be set
3. Nothing else should be running on port 8080 and 8887.

Instructions
For the commands below, the '<ANT>' command depends on your operating system:

Windows: ant.bat
UNIX: ./ant

Note, it is important to use the form “./ant” to avoid running a version on your path.

1. To start the calendar, open a console window and cd to the quickstart directory. Start
hsql by typing:

<ANT> hsqldb
(e.g. ./ant hsqldb)

Next start Tomcat by typing:

Sep 14, 2007 p.12

http://www.bedework.org/bedework/update.do?artcenterkey=2
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://www.bedework.org/
http://www.bedework.org/
http://www.bedework.org/
http://www.bedework.org/bedework/update.do?artcenterkey=2
http://www.bedework.org/bedework/update.do?artcenterkey=2

<ANT> tomcatstart
(e.g. ./ant tomcatstart)

You may need to enter each command in a separate console window.

2. Once Hypersonic and Tomcat are running, you can access the calendar with your
browser by entering the following URL:

http://localhost:8080/bedework
Note: this link will only work on the system on which the quickstart is running.

Which will give you a choice of three applications: the public events calendar (exposed
in two calendar suites), the personal calendar, and a public events administration
client.

3. The valid users and passwords are set in <tomcat-dir>/conf/tomcat-users.xml. In the
quickstart distribution all passwords are set to bedework.

Administrative client login
There are users with administrative privileges:

• calowner: the lowest level - can enter public events

• caladmin: a superuser.

Personal client login:
There are a number of users with no special privileges, these can be used as test users
with the personal calendar client. They are:

• caluser1, caluser2, caluser3, and
• caltest01, caltest02, caltest03, caltest04, caltest05, caltest06, caltest07, caltest08.

4. Both Tomcat and hsqldb should be stopped when you are done. If the commands are
still running (hsqldb should be, and possibly Tomcat), type

CTRL-C

in the window in which the command was started.

Optionally, Tomcat can be stopped by typing

<ANT> tomcatstop

Sep 14, 2007 p.13

http://localhost:8080/bedework
http://localhost:8080/bedework
http://localhost:8080/bedework

Logging
Log messages largely appear in the tomcat log in <tomcat-dir>/logs. This release uses log4j for
most of the application logging. The distributed log4j.xml appears in calendar/resources in
the quickstart and in common/classes in the tomcat directory. It is configured to maintain a
rolling log file, server.log and also append output to the console.

In addition, a socket appender is defined which allows chainsaw to be used to watch the log
output.

Notes
Calendar binaries are included so there is no need to compile any calendar source code. Also,
the database is pre-loaded, so there is no need to run any database scripts.

Thanks to the uPortal team (http://www.ja-sig.org) for the inspiration and the quickstart
release on which ours is based.

2.2 Taking it further: initializing the database
If you've successfully run the quickstart release with the instructions above, you may wish to
initialize the database to clean out the example data and explore the Bedework system with a
clean slate.

These instructions explain how to do this with the Hypersonic database packaged with the
quickstart. If you are ready to use a different database and set up your production environment, please
see Chapter 3.

1. Unzip the dump/restore utility in a useful location, for example in the root of the
quickstart directory:

unzip bedework/dist/dumpres.zip

This will create a directory named "dumpres".

2. Stop HSQL (if running) and rename hsqldb-1.7.3.3/demo to move the demo database
out of the way. (You may also simply delete it.)

3. Restart HSQL, and Hypersonic will create a new, empty demo database.

4. From within the dumpres directory, generate the tables (on linux, make sure the
bwrun.sh script is executable first: chmod +x bwrun.sh):

cd dumpres

Sep 14, 2007 p.14

http://www.ja-sig.org/
http://www.ja-sig.org/
http://www.ja-sig.org/

./bwrun.sh schema-export
(windows: bwrun.bat schema-export)

5. Finally, initialize the database with dumpres/data/initbedework.xml:

./bwrun.sh initdb
(windows: bwrun.bat initdb)

initbedework.xml creates a suggested calendar structure, a MainCampus calendar
suite, a few administrative groups, and everything else you should require to get up
and running with a clean instance of Bedework. No events are created.

initbedework.xml creates exactly two administrative users:

1. a super-user "caladmin" with password "bedework", and
2. a normal admin "calowner" with password "bedework"

Use these userids for access to the administrative web client after initializing with
initbedework.xml.

For more information about the dump/restore utility and its use, please refer to chapter 3.3.

Sep 14, 2007 p.15

Chapter 3 Deploying Bedework

3.1 Prerequisites

Summary
This section describes setting up your build environment and provides guidance on creating
your initial calendars, subscriptions, views, and administrative users. For instructions on
customizing the look and layout of your production system, please see the Bedework Design
Guide on the Bedework website: www.bedework.org.

Requirements
• JDK 1.5

• JAVA_HOME environment variable must be set

• Hardware for testing: most current desktop or laptops will be adequate.

• Hardware for production: A server class machine generally with at least 1Gig
allocated to the jvm (see settings below).

• To implement the Bedework calendaring system, it is useful to understand the
following:

• Java servlets: http://java.sun.com/products/servlet/docs.html
• Servlet containers (e.g. Tomcat, JBoss)
• Authentication is local to your site - some Java programming may be

necessary to accomplish this.

Supported databases.
Bedework uses hibernate (http://www.hibernate.org) as a persistence engine. Bedework
therefore should run on any database supported by hibernate. In reality, there are some
problems, though not insurmountable, with the support of some systems which may require
hand-editing of the schema. In future releases we hope to minimize those issues. The current
list of hibernate supported databases can be found on their site. We hope, eventually to
support a wide range of database systems. The list below reflects the systems on which we
have successfully deployed and run.

Databases may be unsupported at the moment (or permanently) but it may still be possible to

Sep 14, 2007 p.16

http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.jboss.com/
http://www.jboss.com/
http://www.jboss.com/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.onjava.com/pub/a/onjava/2003/05/14/java_webserver.html
http://www.onjava.com/pub/a/onjava/2003/05/14/java_webserver.html
http://www.onjava.com/pub/a/onjava/2003/05/14/java_webserver.html
http://java.sun.com/products/servlet/docs.html
http://www.bedework.org/
http://www.bedework.org/
http://www.bedework.org/

massage the schema enough to make bedework run. We try to indicate why they are not
supported and some will eventually move into the supported category.

Currently, there are versions of bedework deployed on at least:

● Hsql – the database we provide with the quickstart. It is unclear how safe it is to use as
a production database. It appears to be used by various systems to provide a
persistence mechanism for messages etc (jboss?) so it might be usable on a small scale.

● MySql version 5

● Oracle Version 10 and perhaps Version 9 with Version 10 jdbc drivers.

Unsupported databases
Because of our use of hibernate, we don’t support databases they don’t support. Other
problems may be unresolved at the moemnt but in time we will discover a workable solution.

● MySQL version 4: Has problems in a number of areas.

● MS Sql Server: Partially supported but requires at least hand-editing of the schema.
Has not been tried with 3.3.1. At least one problem remains, Sql Server does not follow
the ANSI standard for unique indexes in that null=null for Sql Server but null is never
equal to null in ANSI standard databases. This breaks some of the unique indexes in
bedework.

● Postgres: We hope to do more work in the near future supporting postgres. At this
stage it is possibly mostly a matter of unfamiliarity.

Install the quickstart and test your environment
Before attempting any customization, please test your environment by running the quickstart
release. It is always wise to test your changes incrementally; test each small change to make
certain you understand its effects. Doing these two things will help you understand the
system and will provide useful information to the Bedework support community if you run
into trouble and wish to ask for help.

3.2 Prepare a localized version of Bedework

Prepare your build and runtime properties
Bedework uses ant for the build and deploy process and a number of property files are used
to control that process. Ant properties have the characteristics that once set they cannot be

Sep 14, 2007 p.17

modified so to override default settings you need to set them earlier in the process.

The build first looks for a property file called bedework.build.properties in your home
directory. Your home directory in unix is usually

/home/userid

And in windows is typically

C:\Documents and Settings\userid

So, for example, the local properties file in windows would live here:

C:\Documents and Settings\userid\bedework.build.properties

You can set properties in this file which will override the default settings. In particular you
can tell the build system the location of the configuration you want to build with the setting
(e.g):

Location of our bedework property files
org.bedework.config.properties=${user.home}/bwbuild/myconfig.properties
org.bedework.config.options=${user.home}/bwbuild/myconfig.options.xml

This would cause the build to include the files

<home>/bwbuild/myconfig.properties and
<home>/bwbuild/myconfig.options.xml

The default settings mean the system builds and deploys using the files

bedework/config/configs/democal.properties and
bedework/config/configs/democal.options.xml.

Do not change the original files. Please keep them for reference. Make copies named
appropriately and set the properties above to use them.

The properties file is mostly associated with the deployment process while the options.xml
file is for runtime properties. Gradually this demarcation is being cleaned up so that the
properties file will eventually not be included on the class path. Some properties are needed
at deployment and at run time. These are copied during deployment from the properties file
into the options file.

Sep 14, 2007 p.18

The properties file.
The properties file is divided into sections with different property prefixes.

Install
The section prefixed “org.bedework.install” defines which applications are to be installed.
This consists of a list of application names.

For each name there should be a corresponding section prefixed with
“org.bedework.app.<name>” and also a corresponding section in the options file.

The default configuration comes with a number of application configurations. When creating
a configuration it is appropriate to simplify by removing unneeded applications. Remove the
name from the install property and delete the appropriate section.

Applications in the default configuration are:

● bwconfig – (not in the list but a configuration section is present). This is a try at a web
based confiuration application.

● CalAdmin – the administration application

● Events – public events (unauthenticated access to calendars)

● SoEDept – example calendar suite

● UserCal – personal events

● Pubcaldav – public events caldav server. (unauthenticated access to calendars)

● Usercaldav - personal caldav server -

● caldavTest – a test application for caldav

● test – a test suite

● dumpres – the dump restore utility

● restoreFrom2p3px – the dump restore utility configured to restore from uwcalendar
2.3.x

Global
The section prefixed “org.bedework.global” defines properties global to the whole
deployment process.

Sep 14, 2007 p.19

Application
The section with properties prefixed “org.bedework.app.<name>” are the application
deployment properties, one section per named application.

Two properties define the project and type of application. The value of the property
“org.bedework.app.<name>.project” defines which project the application is a part of.
Currently these can be

● “caldav” - a caldav server

● “caldavTest” - a caldav test package

● “webapps” - a web client

● “dumprestore” - a dump/restore application

● “freebusy” - the freebusy aggregator

The value of the property “org.bedework.app.<name>.type” corresponds to the name of a
subdirectory in bedework/deployment, e.g. webpublic, webadmin, etc. So to define the
administrative client named CalAdmin of type webadmin we have the fragments:

org.bedework.install.app.names=...,CalAdmin,...
...
org.bedework.app.CalAdmin.project=webapps
org.bedework.app.CalAdmin.type=webadmin

Multiple versions of each application type may be deployed, each configured differently. This
is of importance for calendar suites (departmental calendars).

The options file.
This xml file contains run time properties and is divided into sections much like the
properties file. Some values may be copied out of the properties file if they affect both the
deployment and run time. Most of the options are used to set field values in named classes so
that the application will load the settings once only with a single call.

It is important to set the system properties for a new system. These are found in the “syspars”
section of the properties file. A number can be left with the default values and some are not
yet implemented. The properties it is particularly important to set (and their default settings
are:

<name>bedework</name>
<tzid>America/New_York</tzid>

Sep 14, 2007 p.20

<systemid>demobedework@cal.mysite.edu</systemid>

The name property
This property appears in the system table as the primary key.

The tzid property
The tzid is the default timezone to be used for times and dates.

The systemid property
The systemid is used when generating uids for calendar entities. This name should be related
to your site for ease of identification and if you run multiple systems should be different for
each. In addition it takes part in the creation and interpretation of calendar user addresses
which appear in attendees. The part following “@” will probably be the domain to which imip
messages are addressed (in some as yet undefined manner).

Calendar user addresses take the form of a “mailto:” uri so that user “testuser01” on a system
configured as above would have a calendar user address of

mailto:testuser01@cal.mysite.edu

Other properties
There are also a number of names used when creating default calendars. These should be set
to some appropriate localized value.

The size settings are mostly unused at the moment.

The property

<userauthClass>org.bedework.calcore.hibernate.UserAuthUWDbImpl
</userauthClass>

defines which class handles administrative groups for the administrative client. The group
class setting are explained in the “Access rights and groups” section below.

Copy and update the skins (templates)
Now is the time to localize the skins. This can be as simple as replacing the title graphics and
text, or as involved as modifying the global layout and behavior of the front-end. Please see
the Bedework Design Guide for instructions on updating layout and styles.

Stylesheets and Path discovery
Your XSL stylesheets and associated template images and resources (e.g. css files) are located

Sep 14, 2007 p.21

mailto:demobedework@mysite.edu
mailto:demobedework@mysite.edu
mailto:demobedework@mysite.edu

on a web server at the url specified by the property “app.<name>.root” (and
“app.<name>.cal.suite” for the public client) in the config file (e.g.
config/configs/myconfig.properties). Each of the three web clients (public/guest, personal,
and admin) has an associated approot where these files are to be found by the system. For
example, given the values in the properties file:

org.bedework.app.CalAdmin.root=http://somewebserver/bedework-3-1-admin
org.bedework.app.Events.root=http://somewebserver/bedework-3-1-guest
org.bedework.app.Events.cal.suite=MainCampus
org.bedework.app.SoeDept.root=http://somewebserver/bedework-3-1-guest
org.bedework.app.SoeDept.cal.suite=SoeDept
org.bedework.app.UserCal.root=http://somewebserver/bedework-3-1-personal

the administrative client and user client stylesheets will be found at the given url while the
Events public (guest) client will have its stylesheets located at
http://somewebserver/bedework-3-1-guest.MainCampus

Note: the above property values currently have to be copied into the <approot> element in
the options.xml file.

Placing the stylesheets and resources on a separate web server (we suggest/encourage you to
use your primary web server) will make them significantly more convenient to access and
manipulate. Note that if you choose to serve a client over https, you will need to specify the
same protocol for the approot to avoid mixed content messages. Note that the stylesheets are
only loaded at first reference (or if an administrator explicitly flushes the stylesheets).

Under this is a 3 tier structure based on:
• locale
• user agent
• stylesheet name.

The top two are normally named "default". The filters will work down the structure trying a
specific name first then trying default. For example, in the locale "fr_CA" a path

 {$appRoot}/fr_CA/default/...

could lead to a set of French stylesheets while
 {$appRoot}/default/default/...

could lead to English.

The discovered 'real' path is cached with the 'idealized' path as the key so that subsequent
lookups for the same path will proceed without the discovery phase.

Sep 14, 2007 p.22

http://somewebserver/bedework-3-1-guest.MainCampus
http://somewebserver/bedework-3-1-guest.MainCampus
http://somewebserver/bedework-3-1-guest.MainCampus
http://somewebserver/bedework-3-0-personal
http://somewebserver/bedework-3-0-personal
http://somewebserver/bedework-3-0-personal
http://somewebserver/bedework-3-0-guest
http://somewebserver/bedework-3-0-guest
http://somewebserver/bedework-3-0-guest
http://somewebserver/bedework-3-0-guest
http://somewebserver/bedework-3-0-guest
http://somewebserver/bedework-3-0-guest
http://www.somewebserver.edu/rpi-bedework-3-0-admin
http://www.somewebserver.edu/rpi-bedework-3-0-admin
http://www.somewebserver.edu/rpi-bedework-3-0-admin

A deploy time property can specify that the target server has directory browsing disallowed,
in which case the filters search for a marker file called xsltdir.properties

3.3 Set up a production database
The quickstart is set up to use hsqldb and this provides a good way to try out the system. To
move to another database system you will need to configure the build to affect the following:

• Configure tomcat or each context to use another database

• Configure hibernate to use the appropriate dialect

• Configure the schema process to point to the same database

• Rebuild

• Configure the dump/restore

Note: if you'd like to set up an initialized database in hsqldb for testing, you can skip to
“Build Schema and Initialize” on page 10 and just run “./bwrun schema-export” followed by
“.bwrun initdb” against an empty hsql database. To create this, stop hypersonic (if running)
and rename (or throw away) the directory named <hsqldb-dir>/demo. Restart hsql and the
directory will be recreated in an empty state. See page 10 for more information about the
schema-export and initdb commands.

Configure your applications context.xml
Tomcat 5.5.x applications are configured by setting up context.xml files for each application.

Each bedework web application has one or more predefined context.xml files located in the
applications war/META-INF directory. Currently all are almost identical and look like this:

<Context path="@CONTEXT-ROOT@" reloadable="false">
 <Resource name="jdbc/calDB" auth="Container"
 type="javax.sql.DataSource"
 driverClassName="org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:hsql://localhost:8887"
 username="sa"
 password=""
 maxActive="8"
 maxIdle="4"
 maxWait="-1"
 defaultAutoCommit="false" />

Sep 14, 2007 p.23

 <!-- Disables restart persistence of sessions -->
 <Manager pathname=""/>
</Context>

The “@CONTEXT-ROOT@“ is an example of a token which will be replaced during
deployment by a value from the properties file. You probably only need one of these files, if
you have the above token in your file it will be replaced with the correct context root.

To use your own copy of the context.xml file, create such a copy in an accessible location and
then update your properties file to refer to it. The relevant property looks like (for example)

...
org.bedework.app.CalAdmin.tomcat.context.xml=war/META-INF/context.xml
...
org.bedework.app.Events.tomcat.context.xml=war/META-INF/publiccontext.xml
...

and you would change them to something like:

...
org.bedework.app.CalAdmin.tomcat.context.xml=<home>/bwbuild/prod/context.xml
...
org.bedework.app.Events.tomcat.context.xml=<home>/bwbuild/prod/context.xml
...

Configure Tomcat 5.5.x
With the above configuration you do not need to configure a database in tomcat’s server.xml.
However some changes are needed. These are:

● Allow no roles

● Add jdbc drivers

● Allow directory browsing

● Jvm parameters

Allow no roles
Tomcat’s handling of security constraints was at some point changed to be absolutely
compliant with the servlet specification. Unfortunately, in this regard at least, the
specification is somewhat impractical. Within the web.xml security-constraint element is a
role-name element which is set to “*” as in this example:

Sep 14, 2007 p.24

<security-constraint>
 <web-resource-collection>
 <web-resource-name>CalendarAdmin</web-resource-name>
 <description>Public events Administration</description>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint> ...

The entry

<role-name>*</role-name>

used to mean ANY role. It now means by default any role defined in the web.xml. There is no
way defined in the servlet specification to have security constraints without roles.

However, it appears that the behavior is configurable in tomcat. In the server.xml there is the
definition of the Realm used for authentication. Add a setting for the allRolesMode attribute,
in the quickstart it will look like

 <Realm className="org.apache.catalina.realm.UserDatabaseRealm"
 resourceName="UserDatabase"
 allRolesMode="authOnly" />

and you should be able to login without any role assigned.

Add Jdbc drivers
You will need to ensure that the driver jar is added to the common/lib directory.

Allow directory browsing
This change is only required of you are using tomcat to host your stylesheets. Our
recommendation is to host them on your public web server. If you do wish to host them on
tomcat you must decide whether you want directory browsing enabled or disabled. Enabled
allows bedework to discover the stylesheets by checking for the existence of directories.
Otherwise marker files must be created. The tomcat default is to disallow directory browsing.
If you wish to allow browsing open the file conf/web.xml and find the setting for the listing
property:

 <init-param>

Sep 14, 2007 p.25

 <param-name>listings</param-name>
 <param-value>false</param-value>
 </init-param>

Change the value “false” to “true” to allow browsing of directories.

Uri encoding
By default tomcat uses ISO-8859-1. If you want to use Tomcat with UTF-8, you must add the
following parameter in your server.xml file: URIEncoding="UTF-8".

<Connector port="8080" maxHttpHeaderSize="8192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" redirectPort="8443"
 acceptCount="100"
 connectionTimeout="20000" disableUploadTimeout="true"
 URIEncoding="UTF-8" />

JVM parameters
The quickstart jvm parameters may be adequate for small scale testing or development. For
production use you will certainly need to modify the JVM parameters. Below is a sample set
of options (from a jboss configuration).

JAVA_OPTS="$JAVA_OPTS -server -Xms1792m -Xmx1792m"
JAVA_OPTS="$JAVA_OPTS -XX:NewSize=512m -XX:MaxNewSize=512m”
JAVA_OPTS="$JAVA_OPTS -XX:SurvivorRatio=2"
JAVA_OPTS="$JAVA_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m"
JAVA_OPTS="$JAVA_OPTS -XX:+UseParallelGC -XX:+UseAdaptiveSizePolicy”
JAVA_OPTS="$JAVA_OPTS -XX:+AggressiveHeap"

Configure hibernate

Setting your SQL dialect
Configuring hibernate to use the appropriate dialect is done in your configuration file.

For example, if your bedework.build.properties specifies a properties file at
<home>/bwbuild/myconfig.properties (see Setting up your local configuration) then in that
file you need to set a few properties

org.bedework.global.hibernate.dialect=yourDialect

and at least

Sep 14, 2007 p.26

http://www.bedework.org/trac/bedework/wiki/BuildEnv
http://www.bedework.org/trac/bedework/wiki/BuildEnv
http://www.bedework.org/trac/bedework/wiki/BuildEnv

org.bedework.app.dumpres.hibernate.dialect=yourDialect

The value yourDialect is a defined hibernate SQL dialect such as
org.hibernate.dialect.HSQLDialect or org.hibernate.dialect.MySQL5Dialect. The dialect is a
class defined on the class path. Hibernate defines a number of ‘standard’ dialects.

For example, the global property if using MySQL5 would be

org.bedework.global.hibernate.dialect=org.hibernate.dialect.MySQL5Dialec
t

A list of dialects understood by Hibernate can be found at:

http://www.hibernate.org/hib_docs/v3/reference/en/html/session-
configuration.html#configuration-optional-dialects

For the dialects included with bedework, look at the org.hibernate.dialect classes in the
Hibernate jar file (for example, to use MySQL 5 which is not currently listed in the on-line
Hibernate documentation, use org.hibernate.dialect.MySQL5Dialect).

Before building the system, if you are building for a database other than the quickstart
hsqldb, you will need to make the appropriate jdbc drivers available. Place the driver jar file
in the directory bedework/lib/jdbc and it will appear on the class path for the schema and the
dump and restore applications.

Build the schema and initialize
With all that in place it is now possible to create a schema and initialize the database. The
deploy process created a zip file in the bedework/dist directory which can be unwrapped to
run the schema build. The default name for that application is dumpres.zip. This file contains
a Unix shell script named bwrun.sh and a Windows bat file named bwrun.bat.

Unzip that file to a convenient location and in linux ensure the file called bwrun.sh is
executable (chmod +x bwrun.sh).

To create a schema file for your system enter:
./bwrun schema

This produces a file named “schema.sql”.

The hibernate schema tool can also create all the tables and constraints directly in the target
database. If you wish to use this option then enter:

./bwrun schema-export

Sep 14, 2007 p.27

http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects

The tables will be created in your database (a file named “schema.sql” is also created). This
process is non-destructive, so if you wish to start with a clean database, you will need to
manually drop your tables. A word of warning here; while the schema-export option is
useful there is little or no error checking taking place. Check back through the output for
errors.

To initialize an empty database use initdb, e.g.

./bwrun initdb -ndebug -indexroot path-for-lucene

This uses an initial data file wrapped up with the dump restore application
(data/initbedework.xml). (See also the “restore” target below to restore a different file.)

The optional parameter -ndebug will turn off debugging output. This makes things faster for
large restores.

The indexroot parameter is used to tell the restore where your lucene indexes should be built.
In the quickstart this is a relative path because the quickstart might be restored anywhere, but
in general this should be an absolute path.

For testing, a directory in your home directory might be appropriate, for production use
perhaps a /data directory, e.g. /data/calendar-3.3.1/lucene/indexes

This directory must be destroyed and recreated before restoring the data.

Note: initbedework.xml creates a super-user “caladmin” with password “bedework”. However, there
is a potential problem here if you are trying to bring yourself up in your local user address space; you
need an administrator that can log into the admin client. To simplify this, we will probably add a
property to set the administrative user you wish to use in future releases.

To dump the database data use

./bwrun dump <filename>

The application can be used to produce a regular nightly xml dump of the data. In future
releases the dump/restore will be reformatted to facilitate restoration of a single users data.

To restore the data use

./bwrun restore <filename> -ndebug -indexroot path-for-lucene

where <filename> is the name of a dump file produced by the dump process. The tables must
be empty to restore the data.

Sep 14, 2007 p.28

The indexroot parameter is needed if you want to change the one set in the data. Remember
to empty (or destroy and recreate) the directory.

3.4 Authentication
The calendar uses container-based authentication as defined by the Java servlet specification.
There is no authentication code within the calendar system.

Authentication can be managed by the servlet container in a number of ways which are
currently beyond the scope of this document. Tomcat's implementation can be configured, at
its simplest, in its <tomcat>/conf/tomcat-users.xml file. The tomcat website provides details
on configuring tomcat to use other forms of authentication, including ldap and databases.
(see also Tomcat SSL HowTo).

An alternative which has been implemented is to use filter based Yale/JA-SIG CAS.

3.5 Build and deploy
Build the calendar with the command:

./ant clean.deploy.debug

(".debug" will provide debugging output in the server log. You can remove it and rebuild when you
are convinced you are production ready.)

./ant clean.deploy

Do not specify “ant”. The form above executes the ant contained in the quickstart which has
some extra features installed. If you use the form “ant” you will execute the ant installed in
your system which may be an earlier version and/or not have the required libraries.

This will create a number of WAR files in <bedwork>/dist/ including for example:

cal.war, caladmin.war, and ucal.war

If you are using the Tomcat directory within the quickstart distribution, your application war
files are now deployed. Otherwise, collect the war files and drop them in your container.

Sep 14, 2007 p.29

http://www.ja-sig.org/wiki/display/CAS/Home
http://www.ja-sig.org/wiki/display/CAS/Home
http://www.ja-sig.org/wiki/display/CAS/Home
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://java.sun.com/products/servlet/reference/api/index.html
http://java.sun.com/products/servlet/reference/api/index.html
http://java.sun.com/products/servlet/reference/api/index.html

3.6 Add a super user
At some point you will switch from the quickstart authentication to your sites authentication.
Before this happens you need to ensure you have an administrative super user that exists
within your own authentication domain.

Two ways to achieve this are to:

1. Create a user in your domain, e.g. caladmin, that is already set up as a superuser in the
bedework quickstart.

2. Create a bedework superuser with an account that already exists in your
authentication domain.

Option 2 is probably the most appropriate and as the deployer it is probably appropriate to
use your own account, at least initially.

3.7 Add administrative groups and users
In the quickstart administrative groups are stored in the calendar database. Administrative
groups are intended to be separate from user groups to allow different access rights to be
defined for administrative users. (See “Access rights and groups” below)

1. Within the /caladmin application, select "Admin Groups: Add"

2. Give the group a name, a description, provide a userId for the owner, and set the
"Events Owner" to agrp_groupName, or something meaningful that will will easily
identify which group the event belongs to. (Note: you should leave the prefix on group
owners; the prefix is defined in the properties file as the property
org.bedework.app.CalAdmin.admingroupsidprefix)

3. Once the group is added, add members by providing a userId that should map to the
userId used to authenticate to the administrative client.

3.8 Add Calendar Suites
Note: You cannot run a public client unless an associated calendar suite has been defined in
the admin client. These steps document setting up an example calendar suite; note that the
name for the suite must match the “cal.suite” property in your configuration properties file.

For example, the quickstart defines a calendar “Events” and the property
“org.bedework.app.Events.cal.suite” has the value “MainCampus”.

Sep 14, 2007 p.30

● Within the /caladmin application, create a group which will effectively own the new
suite. Only administrative users who are members of this group will be able to
administer this suite. For example we can create a group called “myDept” with owner
set to your user account and the events owner set to “agrp_mydept”

● Add users and/or groups to that administrative group.

● Go back to the main menu, select “Manage Calendar Suites” and add a new suite. Give
it a name, set the group, e.g. myDept from above and set the root calendar to be
“/public".

● Give administrators write access. At least add yourself.

● Log out and log in again and select the group you just created if given a choice.

● Currently, the system creates a default subscription you need to remove. Go to manage
views, select “All” and remove the single subscription. Next, via the main menu, go to
manage subscriptions, select that subscription and delete it.

● Add subscriptions to those public calendars you want to see through one or more
views. Set “display” to yes as you add them.

● Via the main menu, select Manage Views and add any other views you want, adding
subscriptions to those views.

● To set the default view (and other preferences) for the new calendar suite, go to
“Manage Preferences” on the main menu. Until you are familiar managing views, you
may wish to set the default view to “All”..

3.9 Create initial public calendars, subscriptions, and views
● Within the /caladmin application, select: “Manage calendars” from the Main Menu.

You will see a default set of calendars that you can manipulate.

● When you are satisfied with your collection of calendars, select “Manage
subscriptions” from the Main Menu. You will see a default set of subscriptions that
map to top level calendars. A one-to-one relationship does not have to exist between
top-level calendars and subscriptions, but it is useful for initially setting up your
views. Set any subscription preferences here, including css style.

● Finally, create views by selecting “Manage views” from the Main Menu. Create views
by adding subscriptions to the view. Again, a one-to-one relationship does not have
to exist between top-level calendars and views, but in many cases, this is what you'll

Sep 14, 2007 p.31

want to expose in your public calendar system. The views named here will present
themselves in the pull down list of views in the public client.

● By default, there is a view named “All” that contains all existing subscriptions. The
“All” view is set as the default view for the special user “public-user”. If you want to
change the default view, enter the special user “public-user” in the “Edit user
preferences (enter userid):” field in the User Management section of the Main Menu;
you will be presented with a form in which you can change the default view.

3.10 Access rights and groups
Access to resources in Bedework is controlled by an access control system based on WebDAV
and CalDAV. A user’s access is based on their identity and group membership. The system
allows a different group structure for administrative and user access. This ensures that a
given user, when logged in to the user client, does not have any special administrative rights
which may lead to unfortunate consequences, such as deleting a public calendar by mistake,
or adding private events to public calendars.

Two system parameters determine this behavior, the initial values are set in the xml options
file, democal.options.xml in the quickstart. The relevant elements in the syspars section are:

<admingroupsClass>org.bedework.calcore.hibernate.AdminGroupsDbImpl
</admingroupsClass>

 <!--
 <usergroupsClass>org.bedework.calcore.ldap.UserGroupsLdapImpl
 </usergroupsClass>
 -->
 <usergroupsClass>org.bedework.calcore.hibernate.GroupsDbImpl
 </usergroupsClass>

Note the second of the three is commented out. These settings define which class will be used
to manage groups for the administrative and user clients. The first class is an implementation
which uses a the Bedework database to store the administrative groups.

The last setting is a dummy class which does nothing but which could use the database to
allow testing or perhaps even for sites which don’t want to use a site-wide directory.

The commented out setting is a class which uses ldap to determine group membership. In the
options file is a section labeled “user-ldap-group” which configures this class. This class
should also be usable with Active Directory.

Sep 14, 2007 p.32

Using ldap for groups and account validation
Authentication is performed outside of bedework, either by the container (e.g. tomcat) or by a
filter mechanism or some other approach.

However, bedework still requires access to directory services of some kind to determine
group membership and to check whether accounts are valid. As indicated above, a class is
available to perform group lookup and account validation using an ldap directory.

The current implementation of this class assumes the directory is readable. In production this
is unlikely to be adequately secure so we will be working on changes to improve the security.
One possibility is to define a custom resource in the container to provide access to the naming
context. That will allow some of the authentication parameters to be moved out into the
container configuration.

3.11 Upgrading
Bedework has been running at your site for some time and new versions have appeared and
now it's time to upgrade. How do you migrate all that data from one version to the next?

The dump/restore utility is the tool to use. The intent is that any given version of the restore
process will be able to read dump files produced by earlier versions.

Currently we expect to be able to read data dumped from UWCalendar 2.3.2 (with slight
massaging) and any version of bedework. Later on we intend dropping UWCalendar support
but it will still be possible to migrate through a two step process.

Sep 14, 2007 p.33

Chapter 4 Bedework and Portals

4.1 Introduction
The intent is to have an application that can live inside and outside of a portal and be equally
functional in both contexts. Some organizations that run bedework have no intention, at least
currently, of running a portal. Others do not wish to make any of their portal applications
visible outside of that framework.

To achieve this we decided to use the apache portals-struts bridge. This is a widely used
package which, in theory, allows a struts based application to run inside a portal. In addition,
that same deployed package is available outside of the portal if you so wish.

In reality, the portal context places a number of restrictions on the application. Some of these
are easily met, (the action/render urls). Others restrictions cause problems, (see below).

While it is possible that organizations will want some different styling for the portal version,
as much as possible we try to have a single stylesheet for both. Bedework is a complex
application so inheriting styles from the portal may not work too well. At the very least
however, much of the header and footers should be dropped for the portal.

4.2 Limitations of JSR168
To allow bedework to run in as many portals as possible we need a common framework. That
framework in the portal world is JSR168 – the portlet specification.

Unfortunately, this specification left out some key pieces. The worst omission is the ability in
some controlled way to set the content type. This prevents us from using a number of
standard web practices in a portal agnostic fashion. We are unable to use Ajax, create pop-up
windows or even to initiate a binary (or ics) download.

Most (possibly all) portals provide ways around these restrictions. However, because they are
not part of any specification they are different for most portals. Thus, after the 3.3.1 release we
reimplemented a number of features in the stylesheets which previously used popup
windows. This does not prevent someone with sufficient knowledge of their portal
framework from reimplementing such features using portal specific mechanisms. As our
intent is to have an easily deployable portlet it does prevent us from distributing bedework
with those features already in place.

Sep 14, 2007 p.34

Binary – or ics – downloads.
This still leaves us with the problem of binary downloads. In bedework this shows up in the
downloading of ics files. At the moment it appears that the only portal agnostic solution to
this problem is single-signon. Bedework as distributed will build links to the servlet version
bypassing the portal altogether.

Without single signon, this leads to the authentication promp and, at the moment, a failure to
download. Immediately following this with another attempt leads to a successful download.

With single signon, this process should work.

Popups
The possible solutions to popups are related to that for binary downloads. The portlet
specification states (PLT.15.4) that “data stored in the HttpSession by servlets or JSPs is
accessible to portlets”. It appears it should be possible to share the current portlet session
with the servlet and there is some suggestion that the current tomcat distibution allows this.

4.3 Hope on the horizon
The portlet specification is being worked upon and version 2 is on its way. This appears to
deal with a number of the outstanding issues as well as handling a number of other areas
passed over in the first version.

However, we will have to wait for portals to implement the new specification which may take
some time.

Sep 14, 2007 p.35

Chapter 5 Access Control

5.1 An overview
Bedework has an access control system based in large part on the WebDAV ACL specification
[RFC3744] with CalDAV extensions. Access rights are inherited down the tree of folders,
calendars and calendar entities and can be given to or denied from users and groups and
other principals.

Setting access rights is complex and difficult, even for apparently simple cases. For that
reason later versions of bedework will incorporate 'wizard' style tools to help users set access
based on their intentions rather than requiring them to determine the appropriate set of
ACEs.

5.2 Definitions

Principals
A principal represents an entity which might need to be denied or given access or with which
we might want to interact. For example, user principals usually represent real people and
group principals represent groups. Other principals might be host principals, ticket principals
or resource principals.

A resource principal might be, for example, a room allowing us to invite a room to a meeting,
thus booking that room.

ACE
An ACE is an Access Control Entry. This defines grant or deny access for a single principal. It
consists of a principal type, the principal itself – perhaps in a modified form and the denied
or granted access rights. Special principal types include unauthenticated, authenticated and
others.

ACL
An Access Control List. This is a list of ACEs which together define the access for a given
entity. Internally only the ACEs set explicitly for an entity are stored with that entity. The full
ACL consists of all inherited ACEs together with any explicit ACEs.

Sep 14, 2007 p.36

5.3 Scheduling and freebusy access
Access control for scheduling is based on CalDAV calendar access and CalDAV scheduling.

CalDAV introduced the read-freebusy privilege which allows principals to read freebusy
information for the resource with which it is associated.

CalDAV scheduling introduces further privileges which are associated with a principal, not
with any specific resource, and are actually attached to the users inbox. The privileges are
scheduling which includes

● schedule request: allow (named principals) to request meetings

● schedule reply: allow (named principals) to reply to meeting requests

● schedule freebusy - allow (named principals) to send freebusy requests

If user douglm sets the schedule privilege on the inbox for say user testuser01 then user
testuser01 can send and reply to meeting requests and see douglm's freebusy through the web
ui and the caldav server.

NOTE – this is important, in addition to those privileges, douglm must set read-freebusy on
those calendars that he wants testuser01 to access for freebusy info.

The reasoning is that we may want to block or allow scheduling operations as a whole, but if
we allow them we may want to provide a different view of our freebusy to different users.

So if I as douglm have calendars "work" and "athome" I might not allow freebusy access to my
"athome" calendar to colleagues because I don't want them to see how empty my home-life is.
Alternatively I might disallow access to "work" to my wife for the opposite reason.

Simplifying:
It is possible to simply access for most users by setting access at the /user level, as this will be
inherited by all subfolders and calendars.

What you set depends upon what you want as an organization.

The simplest approach is to add the following access to /user

authenticated: schedule, read-freebusy

which should allow any authenticated user to schedule and reply to meeting requests and see
anybody elses freebusy.

Sep 14, 2007 p.37

The administrative interface currently doesn't display /user in the manage calendars page but
you can use a url like:

http://localhost:8080/caladmin/calendar/fetchForUpdate.do?calPath=/user

(with your host of course)

A little more open is to allow that access for others INSTEAD of authenticated - that would
allow scheduling via CalDAV form anywhere.

Sep 14, 2007 p.38

http://localhost:8080/caladmin/calendar/fetchForUpdate.do?b=de&calPath=/user

Chapter 6 Personal Calendars

6.1 Overview.
Personal calendars allow users to carry out all the normal calendaring functions as well as
providing a customized view of public events through subscription to public calendars.
Currently access to their calendar is through the web clients provided with bedework. In the
near future we hope CalDAV will be available giving access to Apple, Sunbird and Outlook
users.

Default calendars
A new user will have a set of default calendars created. One of these is the default calendar
for events, the name can be configured at deployment but the default is “calendar”. In
addition a set of special calendars are created, “Trash”, “Inbox” and “Outbox”. The inbox and
outbox are used for scheduling meetings and supporting bedework’s implementation of itip.
The Trash calendar is used in the usual way to store deleted events before complete removal
from the system.

Subscriptions and views.
The default state for a personal calendar user is to have one view with a name determined by
the “defaultUserViewName” syspars setting (default “All”). This view contains one
subscription to the user root collection at “/user/<account>” with the user account as the
name. Only the default calendar with the name given by the “userDefaultCalendar” syspar is
created.

Other special calendars, such as Trash, Deleted, Inbox etc are only created as needed.

The initial default setting is normally created at the first service api open for that user.
Because all (non-special) calendars in a subscription are visible, if a user creates a new
calendar it will automatically be visible in the default view. Thus the initial default state is
relatively simple for users to manage and will probably be sufficient for most users.

When a user explicitly subscribes to a calendar, such as a public calendar or one shared by
another user, that subscription will be automatically added to the default view. Once again,
this default behavior is suitable for most users.

Sep 14, 2007 p.39

6.2 Scheduling Meetings
The scheduling features of bedework are almost complete; there is certainly sufficient
support to carry out simple scheduling. The flow of meeting requests and responses is
defined by the relevant rfcs (2446, 2447) and the CalDAV scheduling extensions. The process
can be complicated and subject to delays depending upon the location of the attendees.

Calendar users and addresses
The potential attendees for a meeting may be internal to the system, that is they are bedework
users, or external. This is determined by their calendar user address (CUA) which usually
looks like an email address. The bedework system is identified by one or more email
domains, for example cal.mysite.edu and an address in those domains is considered internal
otherwise it is external.

For example, with the above domain, jim@cal.mysite.edu is internal, jim@thatsite.edu is
external.

In addition, bedework supports principals which look something like
“/principals/resources/vcc311”. These are generally used to handle resources and locations
but user principals are also mapped on to the email form of the calendar user address.

Bedework also allows the configuration option of preserving the domain part of a CUA. If we
are not preserving the domain then a bedework CUA of jim@cal.mysite.edu would map on
to a bedework user jim. For single domain systems this is more convenient.

In and Out
Each user has an inbox and an outbox. These are calendars with some special characteristics.
Incoming scheduling requests always go to the inbox. They may arrive there via CalDAV,
through uploading meeting requests or via an email interface. Scheduling responses to
external users will go to the outbox. The may be immediately processed and at some point
removed from the outbox.

To respond to a meeting request, users select each unprocessed request in the inbox, indicate
their response and then submit that response.

To initiate a meeting request, use the add meeting link, add the attendees then continue on to
set the details. Meeting requests must have one or more attendees and one originator (usually
the current user) who will be added as an attendee.

The inbox and outbox will be created automatically when required.

Sep 14, 2007 p.40

mailto:jim@cal.mysite.edu
mailto:jim@cal.mysite.edu
mailto:jim@cal.mysite.edu
mailto:jim@thatsite.edu
mailto:jim@thatsite.edu
mailto:jim@thatsite.edu
mailto:jim@cal.mysite.edu
mailto:jim@cal.mysite.edu
mailto:jim@cal.mysite.edu

Automatic processing
There are user preferences which indicate meeting requests can be automatically processed. If
time is available for the incoming request it will be accepted, otherwise it will be declined. It
is also possible to indicate that acceptances will be automatically processed; a meeting will
have the attendee status updated automatically when the incoming response is an acceptance.

Scheduling resources
Bedework supports simple scheduling of resources. This is enabled with a degree of
automatic processing of meeting requests to special resources. For example, if a room has the
principal /principals/resources/vcc311 then that principal can be added as an attendee to a
meeting which is intended to be in that room. The aggregated freebusy for the attendees will
be displayed which includes the free time in that room.

The meeting request will be processed and added to the room's calendar, effectively booking
the room for that period.

Sep 14, 2007 p.41

Chapter 7 Timezones
Timezones are an important and at times awkward feature of calendaring. An approach a
calendar system could adopt would be to ignore timezones completely and display events
using local time while storing times as UTC. This loses information implied by the presence
of a timezone so bedework attempts to maintain all timezones set and imported by the user.

There is no official registry of timezones. The closest to such a registry is the Olson database
which chooses to name timezones according to their continent and nearest large city, for
example America/New_York.

Note: At the moment we have had problems generating timezones from the Olson database.
Instead we are using the timezones packaged with ical4j. The instructions below require
updating.

7.1 System timezones
Bedework provides a set of timezones, the system timezones, which are available to all users
of the system. The distributed system comes with timezones derived from the Olson database
but any set of timezones could be used. The administrative application provides a means for
replacing the system timezones by uploading an xml formatted data file.

Building timezone information.
First we need to convert the Olson database into a set of ics files. The data itself is available
from ftp://elsie.nci.nih.gov/pub

The vzic program available via http://www.dachaplin.dsl.pipex.com/vzic/ is used to convert
the zone information, Download and unpack the latest source and set the appropriate
variables.

We set them as follows:

OLSON_DIR=wherever the data was unpacked.
PRODUCT_ID=-//BEDEWORK//NONSGML Bedework Calendar system//US
TZID_PREFIX=

The TZID_Prefix can be set to a value which indicates which system the timezone originated
from, e.g. “/bedework.org/”. Having built vzic (make) and run it (./vzic) a directory named
zoneinfo should be built. This is copied into the bwtolls/resources directory.

A copy of this generated data is available at http://bedework.org/downloads/data/

Sep 14, 2007 p.42

http://bedework.org/downloads/data/
http://bedework.org/downloads/data/
http://bedework.org/downloads/data/
ftp://elsie.nci.nih.gov/pub
ftp://elsie.nci.nih.gov/pub
ftp://elsie.nci.nih.gov/pub

The next step is to convert the data into an xml form for upload. Change directory into the
bwtools project and run the following (all one line) which will create a file of xml timezone
information:

java -cp bin/bw-tztools-3.2.jar:lib/log4j-1.2.8.jar
org.bedework.tools.timezones.Timezones -dir
projects/bwtools/resources/zoneinfo -f tz.xml

A copy of this is generated file is also available at the link above. Finally we need to replace
the system timezones in the production system.

Log in to the administrative client as a super user, go to “Upload and replace system
timezones“, browse to the generated timezones file, then upload.

Sep 14, 2007 p.43

http://localhost:8080/caladmin/timezones/initUpload.do?b=de
http://localhost:8080/caladmin/timezones/initUpload.do?b=de
http://localhost:8080/caladmin/timezones/initUpload.do?b=de
http://localhost:8080/caladmin/timezones/initUpload.do?b=de
http://localhost:8080/caladmin/timezones/initUpload.do?b=de
http://localhost:8080/caladmin/timezones/initUpload.do?b=de

Chapter 8 Bedework and CalDAV

8.1 Summary
CalDAV (rfc4791) provides a protocol for interaction between calendar clients and servers,
much like iMap provides such a protocol for email. CalDAV is built on top of WebDAV
which is an HTTP based protocol. As a result, CalDAV inherits all of the advantages and
disadvantages of those protocols.

What CalDAV adds to WebDAV is largely reporting but also some restrictions on the
placement and handling of calendaring entities.

WebDAV is a protocol which is oriented towards document sharing. This works well enough
as long as we remember the unit of information in CalDAV is not a calendar but a
calendaring entity such as an event or task.

So, for example, we cannot use the PUT method to store an entire calendar consisting of many
events or tasks. Nor, using GET, can we retrieve an entire calendar. Typically, to date,
WebDAV sharing of calendar information has involved viewing an entire calendar as a single
document which is retrieved, updated adn then stored. This is not the case with CalDAV.

8.2 The Bedework implementation
Bedework, at it's core, is not file system based, but uses a database for storage, retrieval and
indexing. Events are not stored as a byte for byte image of rfc2445 calendar components but
are stored in a relational database as rows and columns in tables.

CalDAV is not the only method used to access the data and their exists a certain tension
between the needs of the different access methods.

Bedework is intended to be ultimately a complete implementation of CalDAV. At the
moment we support most of the CalDAV operations (with varying degrees of success) but it
is still a work in progress. As more clients become available and more experience is gained in
practical use of the protocol a practical working subset supported by all clients and servers
will probably emerge.

The quickstart configuration has two CalDAV servers, a public unauthenticated server and
the authenticated version used for personal calendars. As CalDAV is a WebDAV based
protocol it is possible to retrieve appropriately permitted personal information via the
unauthenticated server. This allows users to share their freebusy information with the world

Sep 14, 2007 p.44

if they so wish.

8.3 CalDAV clients
Currently the following clients support CalDAV to a greater or lesser degree.

● Evolution (for linux)

● Mozilla lightning and sunbird (all platforms)

● OSAF Chandler (all platforms)

In addition Apple has announced support to be released later this year.

8.4 Unsupported features
Some of these unsupported features reflect lack of support for some rfc features – others
difficulty in providing support for CalDAV specific features. The list is also incomplete but
over time will probably get shorter but more accurate.

Recurrence features

Recurrence id ranges
Recurrence id ranges take the values THISANDFUTURE or THISANDPRIOR. As yet this
feature is not supported and CalDAV queries or updates using this feature will have
uncertain results.

Sep 14, 2007 p.45

	Chapter 1 Overview
	Calendar collections and folders.
	Subscriptions
	Views
	1.1 Public Events Calendaring
	Public Event Administration: Users & Groups
	Groups:
	Group structure and access control:

	Administrative users:
	Authentication

	1.2 Calendar Suites
	1.3 Personal & Group Calendaring

	Chapter 2 Getting Started
	2.1 The Quickstart
	Packaged with the quickstart
	System requirements
	Instructions
	Logging
	Notes

	2.2 Taking it further: initializing the database

	Chapter 3 Deploying Bedework
	3.1 Prerequisites
	Summary
	Requirements
	Supported databases.
	Unsupported databases
	Install the quickstart and test your environment

	3.2 Prepare a localized version of Bedework
	Prepare your build and runtime properties
	The properties file.
	Install
	Global
	Application

	The options file.
	The name property
	The tzid property
	The systemid property
	Other properties

	Copy and update the skins (templates)
	Stylesheets and Path discovery

	3.3 Set up a production database
	Configure your applications context.xml
	Configure Tomcat 5.5.x
	Allow no roles
	Add Jdbc drivers
	Allow directory browsing
	Uri encoding
	JVM parameters

	Configure hibernate
	Setting your SQL dialect

	Build the schema and initialize

	3.4 Authentication
	3.5 Build and deploy
	3.6 Add a super user
	3.7 Add administrative groups and users
	3.8 Add Calendar Suites
	3.9 Create initial public calendars, subscriptions, and views
	3.10 Access rights and groups
	Using ldap for groups and account validation

	3.11 Upgrading

	Chapter 4 Bedework and Portals
	4.1 Introduction
	4.2 Limitations of JSR168
	Binary – or ics – downloads.
	Popups

	4.3 Hope on the horizon

	Chapter 5 Access Control
	5.1 An overview
	5.2 Definitions
	Principals
	ACE
	ACL

	5.3 Scheduling and freebusy access
	Simplifying:

	Chapter 6 Personal Calendars
	6.1 Overview.
	Default calendars
	Subscriptions and views.

	6.2 Scheduling Meetings
	Calendar users and addresses
	In and Out
	Automatic processing
	Scheduling resources

	Chapter 7 Timezones
	7.1 System timezones
	Building timezone information.

	Chapter 8 Bedework and CalDAV
	8.1 Summary
	8.2 The Bedework implementation
	8.3 CalDAV clients
	8.4 Unsupported features
	Recurrence features
	Recurrence id ranges

